Observation of piezoelectricity in free-standing monolayer MoS₂.

نویسندگان

  • Hanyu Zhu
  • Yuan Wang
  • Jun Xiao
  • Ming Liu
  • Shaomin Xiong
  • Zi Jing Wong
  • Ziliang Ye
  • Yu Ye
  • Xiaobo Yin
  • Xiang Zhang
چکیده

Piezoelectricity allows precise and robust conversion between electricity and mechanical force, and arises from the broken inversion symmetry in the atomic structure. Reducing the dimensionality of bulk materials has been suggested to enhance piezoelectricity. However, when the thickness of a material approaches a single molecular layer, the large surface energy can cause piezoelectric structures to be thermodynamically unstable. Transition-metal dichalcogenides can retain their atomic structures down to the single-layer limit without lattice reconstruction, even under ambient conditions. Recent calculations have predicted the existence of piezoelectricity in these two-dimensional crystals due to their broken inversion symmetry. Here, we report experimental evidence of piezoelectricity in a free-standing single layer of molybdenum disulphide (MoS₂) and a measured piezoelectric coefficient of e₁₁ = 2.9 × 10(-10) C m(-1). The measurement of the intrinsic piezoelectricity in such free-standing crystals is free from substrate effects such as doping and parasitic charges. We observed a finite and zero piezoelectric response in MoS₂ in odd and even number of layers, respectively, in sharp contrast to bulk piezoelectric materials. This oscillation is due to the breaking and recovery of the inversion symmetry of the two-dimensional crystal. Through the angular dependence of electromechanical coupling, we determined the two-dimensional crystal orientation. The piezoelectricity discovered in this single molecular membrane promises new applications in low-power logic switches for computing and ultrasensitive biological sensors scaled down to a single atomic unit cell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Piezoelectricity in two-dimensional group-III monochalcogenides

KEYWORDS piezoelectricity, two-dimensional (2D) material, monochalcogenide, density functional theory (DFT) calculation ABSTRACT It is found that several layer-phase group-III monochalcogenides, including GaS, GaSe, and InSe, are piezoelectric in their monolayer form. First-principles calculations reveal that the piezoelectric coefficients of monolayer GaS, GaSe, and InSe (2.06, 2.30, and 1.46 ...

متن کامل

Emerging photoluminescence in monolayer MoS2.

Novel physical phenomena can emerge in low-dimensional nanomaterials. Bulk MoS(2), a prototypical metal dichalcogenide, is an indirect bandgap semiconductor with negligible photoluminescence. When the MoS(2) crystal is thinned to monolayer, however, a strong photoluminescence emerges, indicating an indirect to direct bandgap transition in this d-electron system. This observation shows that quan...

متن کامل

A New Method for Electroplating of Crack-Free Chromium Coatings

In this study, different amounts of MoS2 particles and an anionic surfactant were added to the conventional chromium electroplating bath in order to electrodeposite crack-free chromium coatings and the structure, morphology, tribology and corrosion behavior of the deposited coatings were investigated using X-ray diffraction spectroscopy, scanning electron microscopy, pin on disk ...

متن کامل

Exciton dynamics in suspended monolayer and few-layer MoS₂ 2D crystals.

Femtosecond transient absorption spectroscopy and microscopy were employed to study exciton dynamics in suspended and Si₃N₄ substrate-supported monolayer and few-layer MoS₂ 2D crystals. Exciton dynamics for the monolayer and few-layer structures were found to be remarkably different from those of thick crystals when probed at energies near that of the lowest energy direct exciton (A exciton). T...

متن کامل

Photoluminescence of monolayer MoS2 on LaAlO3 and SrTiO3 substrates.

In an atomically thin-film/dielectric-substrate heterostructure, the elemental physical properties of the atomically thin-film are influenced by the interaction between the thin-film and the substrate. In this article, utilizing monolayer MoS(2) on LaAlO(3) and SrTiO(3) substrates, as well as SiO2 and Gel-film as reference substrates similar to previously reported work [Nano Res, 2014, 7, 561],...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature nanotechnology

دوره 10 2  شماره 

صفحات  -

تاریخ انتشار 2015